Graph Algorithms

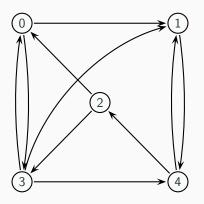
Advanced Algorithms and Data Structures - Lecture 6

Venanzio Capretta

Thursday 5 November 2020

School of Computer Science, University of Nottingham

Directed Graphs

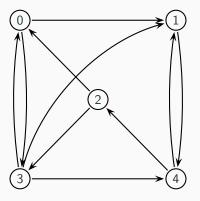


A (directed) graph consists of

- a set of vertices: {0,1,2,3,4}
- a set of edges between the vertices: $\{(0,1),(0,3),(1,4),(2,0),(2,3),(3,0),(3,1),(3,4),(4,1),(4,2)\}$

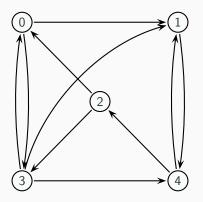
1

Edge Representation



There are several ways of representing graphs as data structures:

Edge Representation



There are several ways of representing graphs as data structures:

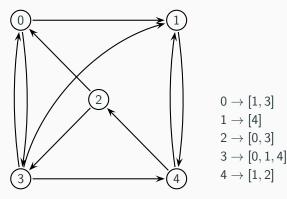
List of edges:

$$[(0,1),(0,3),(1,4),(2,0),(2,3),(3,0),(3,1),(3,4),(4,1),(4,2)]$$

We assume the set of vertices is implicit:

the vertices are the ones given as source or target of edges

Adjacency List



Adjacency List:

For every vertex $i \rightarrow a$ list of vertices j for which there is an edge (i,j)

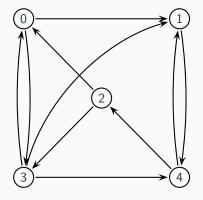
If the vertices are numbered $\{0, \ldots, n-1\}$,

we can leave the source unspecified (it's the index in the list)

List of lists: [[1,3],[4],[0,3],[0,1,4],[1,2]]

2

Adjacency Matrix



	0				
0	false	true	false	true	false
1	false	false	false	false	true
2	true	false	false	true	false
3	true	true	false	false	true
4	false false true true false	true	true	false	false

Adjacency Matrix: An $n \times n$ matrix of Booleans The (i,j) entry is true if there is an edge from i to j

Space Complexity

The amount of memory necessary to store a graph depends on the representation

- With an djacency list we need Θ(V + E) space
 where V is the number of vertices and E is the number of edges
- With an adjacency matrix we need $\Theta(V^2)$ space independently of the number of edges

Space Complexity

The amount of memory necessary to store a graph depends on the representation

- With an djacency list we need Θ(V + E) space
 where V is the number of vertices and E is the number of edges
- With an adjacency matrix we need $\Theta(V^2)$ space independently of the number of edges

Which one is more convenient depends on the number of edges:

- ullet Sparse Graphs: the number of edges is much smaller than the possible maximum V^2 It is more convenient to use a adjacency list
- ullet Dense Graphs: the number of edges is close to the possible maximum V^2 It is more convenient to use a adjacency matrix

Space Complexity

The amount of memory necessary to store a graph depends on the representation

- With an djacency list we need Θ(V + E) space
 where V is the number of vertices and E is the number of edges
- With an adjacency matrix we need $\Theta(V^2)$ space independently of the number of edges

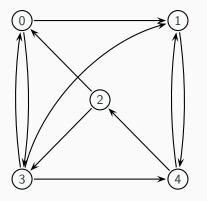
Which one is more convenient depends on the number of edges:

- ullet Sparse Graphs: the number of edges is much smaller than the possible maximum V^2 It is more convenient to use a adjacency list
- Dense Graphs: the number of edges is close to the possible maximum V^2 It is more convenient to use a adjacency matrix

Exercise: Write conversion functions between the two representations

Minimum Length Problem

Given two vertices i and j in a graph, find a path from i to j with the least number of edges



From 0 to 3:

There is a path of length 4: $0 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 3$

But the direct path has length 1: $0 \rightarrow 3$

Dynamic Programming for Minimum Path

We may solve the problem efficiently using Dynamic Programming

Verify that the conditions for DP are met:

Optimal Substructure

Suppose a path $\pi: i \leadsto j$ goes through an intermediate vertex k:

$$\underbrace{i \overset{\pi_1}{\leadsto} k \overset{\pi_2}{\leadsto} j}_{\pi}$$

If π is a minimum path from i to j, then π_1 is a minimum path from i to k and π_2 is a minimum path from k to j

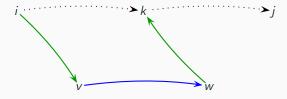
Overlapping Subproblems

The same subproblem may occur in different branches of the computation:

I'm trying to find a minimum path from i to jI use an intermediate vertex k; subprobems: $i \leadsto k, \ k \leadsto j$

Overlapping Subproblems

The same subproblem may occur in different branches of the computation:

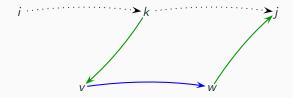


I'm trying to find a minimum path from i to j I use an intermediate vertex k; subprobems: $i \leadsto k, \ k \leadsto j$

Computing $i \rightsquigarrow k$ may involve paths going from v to w

Overlapping Subproblems

The same subproblem may occur in different branches of the computation:

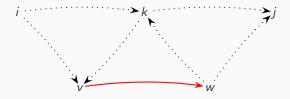


I'm trying to find a minimum path from i to jI use an intermediate vertex k; subprobems: $i \rightsquigarrow k, k \rightsquigarrow j$

Computing $i \leadsto k$ may involve paths going from v to wComputing $k \leadsto j$ may also involve paths going from v to w (not both)

Overlapping Subproblems

The same subproblem may occur in different branches of the computation:

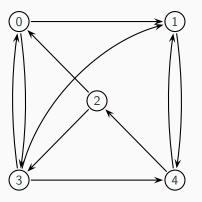


I'm trying to find a minimum path from i to jI use an intermediate vertex k; subprobems: $i \rightsquigarrow k, k \rightsquigarrow j$

Computing $i \rightsquigarrow k$ may involve paths going from v to wComputing $k \rightsquigarrow j$ may also involve paths going from v to w (not both) The subproblem $v \rightsquigarrow w$ is recomputed several times Exercise: Write a DP algorithm to solve the shortest path problem

Longest Path Problem

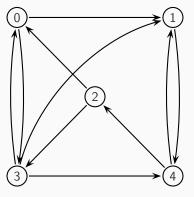
Similar problem: Find the longest simple path between two nodes (simple = contains no cycles)



Longest Path from 0 to 3, length 4: $0 \to 1 \to 4 \to 2 \to 3$ With cycles we could make it as long as we want, ex length 8: $0 \to 1 \to 4 \to 2 \to 0 \to 1 \to 4 \to 2 \to 3$

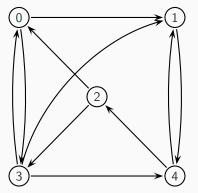
DP for Maximum Length?

Can DP also be applied to this problem? Optimal Substrcture?



DP for Maximum Length?

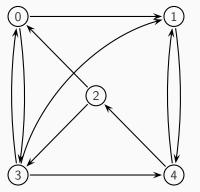
Can DP also be applied to this problem? Optimal Substrcture?



- Optimal solution for $0 \rightsquigarrow 3$: $0 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 3$
- ullet It goes through 1, subproblems: $0 \leadsto 1$ and $1 \leadsto 3$

DP for Maximum Length?

Can DP also be applied to this problem? Optimal Substrcture?



- Optimal solution for $0 \rightsquigarrow 3$: $0 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 3$
- \bullet It goes through 1, subproblems: 0 \leadsto 1 and 1 \leadsto 3
- Optimal solution for $0 \rightsquigarrow 1: 0 \rightarrow 3 \rightarrow 4 \rightarrow 1$
- Optimal solution for $1 \rightsquigarrow 3$: $1 \rightarrow 4 \rightarrow 2 \rightarrow 3$

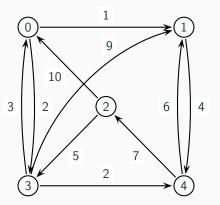
We can't put the subproblem together: cycles!

No DP for Maximum Length

The Maximum Length Problem does not have Optimal Substrcture
We can't apply Dynamic Programming to find an efficient algorithm
In fact, this is an NP-complete problem

Weighted Graphs

We assign to every edge a weight:



Every edge is assign a real number, its weight

We can easily modify the adjacency list and adjacency matrix representations to include weights.

Weighted Graph Representations

Adjacency List

The entries in the list are pairs of target-vertices and edge-weights

$$\begin{array}{lll} 0 \rightarrow [(1,1.0),(3,2.0)] & & [[(1,1.0),(3,2.0)] \\ 1 \rightarrow [(4,4.0)] & & [(4,4.0)] \\ 2 \rightarrow [(0,10.0),(3,5.0)] & & [(0,10.0),(3,5.0)] \\ 3 \rightarrow [(0,3.0),(1,9.0),(4,2.0)] & & [(0,3.0),(1,9.0),(4,2.0)], \\ 4 \rightarrow [(1,6.0),(2,7.0)] & & [(1,6.0),(2,7.0)]] \end{array}$$

Weighted Graph Representations

Adjacency List

The entries in the list are pairs of target-vertices and edge-weights

$$\begin{array}{lll} 0 \rightarrow [(1,1.0),(3,2.0)] & & [[(1,1.0),(3,2.0)] \\ 1 \rightarrow [(4,4.0)] & & [(4,4.0)] \\ 2 \rightarrow [(0,10.0),(3,5.0)] & & [(0,10.0),(3,5.0)] \\ 3 \rightarrow [(0,3.0),(1,9.0),(4,2.0)] & & [(0,3.0),(1,9.0),(4,2.0)], \\ 4 \rightarrow [(1,6.0),(2,7.0)] & & [(1,6.0),(2,7.0)]] \end{array}$$

Adjecency Matrix

The entries in the matrix are weights instead of Booleans

	0	1	2	3	4
0		1.0		2.0	•
1					4.0
2	10.0			5.0	
3	3.0	9.0			2.0
4		6.0	7.0		

Shortest Path Problems

Shortest path problem

Find a path such that the sum of the weights of its edges has the minimum possible value

We assume the weights to be non-negative (If we allow negatives, findind the shortest is as hard as the longest path)

The version with no weights is a special case: all edges have weight 1.0

Shortest Path Problems

Shortest path problem

Find a path such that the sum of the weights of its edges has the minimum possible value

We assume the weights to be non-negative (If we allow negatives, findind the shortest is as hard as the longest path)

The version with no weights is a special case: all edges have weight 1.0

Two versions:

Single-Source Shortest Paths

Fix a source vertex,

find the shortest paths from that source to all vertices

Shortest Path Problems

Shortest path problem

Find a path such that the sum of the weights of its edges has the minimum possible value

We assume the weights to be non-negative (If we allow negatives, findind the shortest is as hard as the longest path)

The version with no weights is a special case: all edges have weight 1.0

Two versions:

- Single-Source Shortest Paths
 Fix a source vertex,
 find the shortest paths from that source to all vertices
- All-Pairs Shortest Paths
 Find the shortest path between all pairs of two vertices

Relaxation

In the solution of the single-source shortest paths problem

- We call $w_{i,j}$ the weight of an edge from i to j; If there is no edge $w_{i,j} = \infty$
- We keep an estimate dist_i of the minimum length of a path from the source s to the vertex i

Relaxation

In the solution of the single-source shortest paths problem

- We call $w_{i,j}$ the weight of an edge from i to j; If there is no edge $w_{i,j} = \infty$
- We keep an estimate dist_i of the minimum length of a path from the source s to the vertex i

We will use an auxiliary relaxation algorithm to update the distances:

- Suppose we have estimated dist_i without using the vertex k
 (That is, our estimate of dist_i uses paths that don't include k)
- If at one point we found the minimum distance dist_k,
 (so dist_i is just an estimate, while dist_k is the correct value)
- We can use k to update the estimate dist_i

Relaxation

In the solution of the single-source shortest paths problem

- We call $w_{i,j}$ the weight of an edge from i to j; If there is no edge $w_{i,j} = \infty$
- We keep an estimate dist_i of the minimum length of a path from the source s to the vertex i

We will use an auxiliary relaxation algorithm to update the distances:

- Suppose we have estimated dist_i without using the vertex k
 (That is, our estimate of dist_i uses paths that don't include k)
- If at one point we found the minimum distance dist_k,
 (so dist_i is just an estimate, while dist_k is the correct value)
- We can use k to update the estimate dist;

RELAXATION: If dist_k + $w_{k,i}$ < dist_i then update dist_i \leftarrow dist_k + $w_{k,i}$

In our algorithm we will keep a queue of vertices whose distance dist_i has been estimated but not yet fixed

In our algorithm we will keep a queue of vertices whose distance dist; has been estimated but not yet fixed

This will be a Priority Queue

A data type which represent a set of keys (vertices) with values (estimated distances) supporting the following operations:

- Insert a new element in the queue with associated value
- Extract the element with the minimum value
- Update the value of an element in the list

In our algorithm we will keep a queue of vertices whose distance dist; has been estimated but not yet fixed

This will be a Priority Queue

A data type which represent a set of keys (vertices) with values (estimated distances) supporting the following operations:

- Insert a new element in the queue with associated value
- Extract the element with the minimum value
- Update the value of an element in the list

The algorithm iterates extracting the vertex with the minimum distance and updating the remaining vertex-distances using relaxation

In our algorithm we will keep a queue of vertices whose distance dist; has been estimated but not yet fixed

This will be a Priority Queue

A data type which represent a set of keys (vertices) with values (estimated distances) supporting the following operations:

- Insert a new element in the queue with associated value
- Extract the element with the minimum value
- Update the value of an element in the list

The algorithm iterates extracting the vertex with the minimum distance and updating the remaining vertex-distances using relaxation

For now we can use a naive representation of queues as list of pairs or (balanced) search trees

We will see efficient tree representations (Heaps) in future lectures: Leftist Heaps, Fibonacci Heaps

Dijkstra's Algorithm

Let the source vertex be s

Keep a vector dist that, for every vertex i, contain an approximation ${\sf dist}_i$ of the length of the shortest path from s to i

Keep an queue Q of vertices whose distance from s has not yet been fully computed

DIJKSTRA'S ALGORITHM:

- Initialize the distance: $dist_i = \infty$ for all i, except $dist_s = 0.0$
- Initialize the queue: Q = V all vertices
- Repeat while Q is not empty
 - Extract from Q the vertex i with the minimum disti
 - Relax the distances of all remaining elements of Q using i

All-pairs shortest path

To compute the minimum distances between all pairs of vertices We could apply Dijkstra's algorithm repeatedly, running the source through all vertices

All-pairs shortest path

To compute the minimum distances between all pairs of vertices We could apply Dijkstra's algorithm repeatedly, running the source through all vertices

A better method is the Floyd-Warshall Algorithm It uses a form of Dynamic Programming It works also with negative weights as long as there are no negative cycles

All-pairs shortest path

To compute the minimum distances between all pairs of vertices We could apply Dijkstra's algorithm repeatedly, running the source through all vertices

A better method is the Floyd-Warshall Algorithm It uses a form of Dynamic Programming It works also with negative weights as long as there are no negative cycles

Idea: Use an growing set of intermediate vertices to construct better and better paths

The intermediate vertices of a path $i_0 \to i_1 \to \cdots \to i_{m-1} \to i_m$ are $\{i_1, \ldots, i_{m-1}\}$

Floyd-Warshall Algorithm

```
Let V_n be the set of vertices \{0, \ldots, n-1\}
So V_0 = \emptyset, V_1 = \{0\}, V_2 = \{0, 1\}, etc.
V_n is the set of all vertices
```

For every k, we compute the minimum distances $\operatorname{dist}_{i,j}^{(k)}$ of a path from i to j that uses only elements of V_k as intermediate vertices

Floyd-Warshall Algorithm

```
Let V_n be the set of vertices \{0, \ldots, n-1\}
So V_0 = \emptyset, V_1 = \{0\}, V_2 = \{0, 1\}, etc.
V_n is the set of all vertices
```

For every k, we compute the minimum distances $\operatorname{dist}_{i,j}^{(k)}$ of a path from i to j that uses only elements of V_k as intermediate vertices

- $\operatorname{dist}_{i,j}^{(0)} = w_{i,j} \ (\operatorname{dist}_{i,j}^{(0)} = \infty \ \text{if there is no edge})$
- A minimum path from i to j that only uses intermediate vertices from V_{k+1} either goes through k or not
 - If it doesn't go through k, then it only uses V_k and $dist_{i,j}^{(k+1)} = dist_{i,j}^{(k)}$
 - If it goes through k, then it is made of a path from i to k and a path from k to j; these paths do not use k as internal vertex, so dist^(k+1)_{i,i} = dist^(k)_{i,k} + dist^(k)_{k,i}
- So $\operatorname{dist}_{i,j}^{(k+1)} = \min(\operatorname{dist}_{i,j}^{(k)}, \operatorname{dist}_{i,k}^{(k)} + \operatorname{dist}_{k,j}^{(k)})$

Floyd-Warshall Algorithm

Let V_n be the set of vertices $\{0, \ldots, n-1\}$ So $V_0 = \emptyset$, $V_1 = \{0\}$, $V_2 = \{0, 1\}$, etc. V_n is the set of all vertices

For every k, we compute the minimum distances $\operatorname{dist}_{i,j}^{(k)}$ of a path from i to j that uses only elements of V_k as intermediate vertices

- $\operatorname{dist}_{i,i}^{(0)} = w_{i,j} \ (\operatorname{dist}_{i,i}^{(0)} = \infty \ \text{if there is no edge})$
- A minimum path from i to j that only uses intermediate vertices from V_{k+1} either goes through k or not
 - If it doesn't go through k, then it only uses V_k and $\operatorname{dist}_{i,j}^{(k+1)} = \operatorname{dist}_{i,j}^{(k)}$
 - If it goes through k, then it is made of a path from i to k and a path from k to j; these paths do not use k as internal vertex, so dist_i^(k+1) = dist_i^(k) + dist_k^(k)
- So $dist_{i,j}^{(k+1)} = min(dist_{i,j}^{(k)}, dist_{i,k}^{(k)} + dist_{k,j}^{(k)})$

FLOYD-WARSHALL ALGORITHM: Use the previous recursive equations to construct a sequence of matrices $(\operatorname{dist}_{i,j}^{(k)})_{i,j=0...n-1}$ for k=0...n Return $(\operatorname{dist}_{i,j}^{(n)})_{i,j=0...n-1}$