# AADS – Lecture 9

Algorithms in Cryptography and Other Miscellaneous Topics

#### Intro

#### On the menu today!

- 1. Algorithms and Cryptography (potential exam material)
  - Symmetric versus asymmetric
  - ► Meet-in-the-middle
  - RSA, exponentiation by squaring
  - Key sizes

#### Intro

#### On the menu today!

- 1. Algorithms and Cryptography (potential exam material)
  - Symmetric versus asymmetric
  - ► Meet-in-the-middle
  - RSA, exponentiation by squaring
  - Key sizes
- 2. Miscellaneous advanced topics in AADS (not exam material)
  - Exponential algorithms
  - Approximate algorithms
  - Parallel algorithms
  - Space complexity
  - Average case complexity
  - Worst-case revisited
  - Space complexity

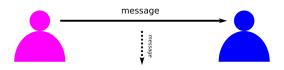
Algorithms in Cryptography

## Algorithms in Cryptography – Intro

#### Why talk about crypto?

- ► Loaded with parallels to algorithms!
- ► Bridges between different disciplines/topics dedde
- Not a crypto class, different angle
- We simplify things

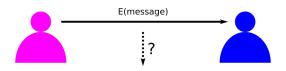
### Algorithms in Cryptography - Encryption



#### Problem

- ► Eavesdroppers can listen in on the channel
- We have to assume channel is insecure / message is "public"

## Algorithms in Cryptography - Encryption



#### **Problem**

- ► Eavesdroppers can listen in on the channel
- We have to assume channel is insecure / message is "public"

#### Solution

- ► The sender *encrypts* the message
- ► Unintelligible with the correct *key*

## Algorithms in Cryptography - The two Types of Encryption

### Symmetric encryption

- Same key used to encrypt and decrypt
- ► "Padlock"
- ► Fast(er)
- In a network of n users, each pair need a distinct key:  $n(n+1)/2 = O(n^2)$  keys
- Security (typically) based on established principles
- No proof of security! But not broken after many years...
- ► AES, 3DES, Blowfish, ChaCha20, ...

## Algorithms in Cryptography - The two Types of Encryption

### Asymmetric encryption

- ► A public key to encrypt, a private key to decrypt
- "Mailbox"
- ► Slow(er)
- ► Each user has only one (pair of) key(s), no matter how many other agents
- Security (typically) based on hardness assumptions
- ▶ Reduction proofs (e.g. reducing to P = NP)
- RSA, ElGamal, Pailler, ...

## Algorithms in Cryptography – Symmetric Encryption

### Breaking Symmetric Encryption

- Finding a weakness in the cipher
- A lot of (smart, well-motivated) people have really tried
- No proof, but well understood structures
- Trust built over time

## Algorithms in Cryptography – Symmetric Encryption

### Breaking Symmetric Encryption

- Finding a weakness in the cipher
- A lot of (smart, well-motivated) people have really tried
- No proof, but well understood *structures*
- ► Trust built over time

### Guessing the Key for a Given Instance

- $\blacktriangleright$  Keys are k bits (e.g. k = 128 for AES)
- All keys equally likely
- All keys produce independent plaintext-ciphertext relationships
- ► Search through all 2<sup>128</sup> possibilities
- T(k) = 2T(k-1)
- "Exponential algorithm"

## Algorithms in Cryptography - Double Encryption

#### Double Encryption

- Encrypt a message twice (with different keys)
- Rationale: larger search space, "patches" cipher if weakness, or if poorly implemented
- ▶ Is it useful? Yes and no...

## Algorithms in Cryptography - Double Encryption

#### Double Encryption

- Encrypt a message twice (with different keys)
- Rationale: larger search space, "patches" cipher if weakness, or if poorly implemented
- ► Is it useful? Yes and no...

#### Meet-in-the-middle Attack

- From a pair x, y such that  $y = E_{K_2}(E_{K_1}(x))$
- lacktriangle Compute candidates ciphertexts  $E_{K1}(x)$  for all  $K_1 \in \{0,1\}^k$
- Insert them in a dictionary
- lacksquare Compute candidates plaintexts  $E_{\mathcal{K}_2}^{-1}(y)$  for all  $\mathcal{K}_2 \in \{0,1\}^k$
- ightharpoonup For each, lookup (expected O(1)) in dictionary for collision
- Collision found = correct key pair found!

#### Modular Exponentiation

- ▶ Computation of the form  $c = b^e \pmod{N}$
- ightharpoonup Example:  $4^3 = 64 = 4 \pmod{15}$

#### Modular Exponentiation

- ightharpoonup Computation of the form  $c = b^e \pmod{N}$
- ightharpoonup Example:  $4^3 = 64 = 4 \pmod{15}$
- What about 28402816495067293752034570<sup>123456789</sup> (mod 7032952002614752938825)...?
- ▶ Requires O(e) (long) multiplications  $\rightarrow$  expensive!

#### Modular Exponentiation

- ightharpoonup Computation of the form  $c = b^e \pmod{N}$
- ightharpoonup Example:  $4^3 = 64 = 4 \pmod{15}$
- What about 28402816495067293752034570<sup>123456789</sup> (mod 7032952002614752938825)...?
- ▶ Requires O(e) (long) multiplications → expensive!

#### Solution: Square-and-Multiply

- **Exponent** in binary form:  $e = \overline{e_n \dots e_1 e_0}$
- From c = 1, for each bit in the exponent:
  - 1. If  $e_0$ ,  $c \leftarrow c \cdot b \mod N$
  - 2. In any case,  $c \leftarrow c^2 \mod N$ ,  $e \leftarrow e \gg 1$
- ▶ Requires  $O(\log e)$  "short" multiplications  $\rightarrow$  OK!



S&M makes modular exponentiation feasible on large numbers!

#### Addition-Chain Exponentiation

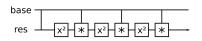
- ► Can we do better than Square-and-Multiply?
- ightharpoonup Example:  $x^{15}$

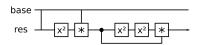
#### Addition-Chain Exponentiation

- ► Can we do better than Square-and-Multiply?
- ightharpoonup Example:  $x^{15}$
- ▶ Square-and-Multiply:  $x \cdot (x \cdot (x \cdot x^2)^2)^2$  (6 multiplications)

#### Addition-Chain Exponentiation

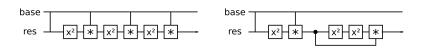
- ► Can we do better than Square-and-Multiply?
- Example:  $x^{15}$
- ► Square-and-Multiply:  $x \cdot (x \cdot (x \cdot x^2)^2)^2$  (6 multiplications)
- ▶ Optimal:  $x^3 \cdot ((x^3)^2)^2$  (5 multiplications)





#### Addition-Chain Exponentiation

- ► Can we do better than Square-and-Multiply?
- ightharpoonup Example:  $x^{15}$
- Square-and-Multiply:  $x \cdot (x \cdot (x \cdot x^2)^2)^2$  (6 multiplications)
- ▶ Optimal:  $x^3 \cdot ((x^3)^2)^2$  (5 multiplications)



But... finding optimal is hard! Also: only constant factor reduction Exercise: can DP help here?

## Algorithms in Cryptography - RSA

#### **RSA**

- ightharpoonup N = pq with p, q two (large) primes
- ightharpoonup Compute  $\lambda(N) = lcm(p-1, q-1)$
- Choose e (small) coprime to  $\lambda(N)$  and compute  $d = e^{-1} \mod \lambda(N)$ ; pk = (e, N),  $sk = (d, p, q, \lambda(N))$

## Algorithms in Cryptography – RSA

#### **RSA**

- ightharpoonup N = pq with p, q two (large) primes
- ightharpoonup Compute  $\lambda(N) = lcm(p-1, q-1)$
- Choose e (small) coprime to  $\lambda(N)$  and compute  $d = e^{-1} \mod \lambda(N)$ ; pk = (e, N),  $sk = (d, p, q, \lambda(N))$
- $ightharpoonup c = m^e \mod N$
- $ightharpoonup m = c^d \mod N$

## Algorithms in Cryptography - RSA

#### **RSA**

- ightharpoonup N = pq with p, q two (large) primes
- ightharpoonup Compute  $\lambda(N) = lcm(p-1, q-1)$
- Choose e (small) coprime to  $\lambda(N)$  and compute  $d = e^{-1} \mod \lambda(N)$ ; pk = (e, N),  $sk = (d, p, q, \lambda(N))$
- $ightharpoonup c = m^e \mod N$
- $ightharpoonup m = c^d \mod N$
- $m{m} = m^{ed} \mod N \ \, {
  m because} \ \, ed = 1 \mod \lambda(N) \ \, ("Carmichael's generalization of Euler's theorem")$

### Algorithms in Cryptography - RSA

#### **RSA**

- ightharpoonup N = pq with p, q two (large) primes
- ightharpoonup Compute  $\lambda(N) = lcm(p-1, q-1)$
- Choose e (small) coprime to  $\lambda(N)$  and compute  $d = e^{-1} \mod \lambda(N)$ ; pk = (e, N),  $sk = (d, p, q, \lambda(N))$
- $ightharpoonup c = m^e \mod N$
- $ightharpoonup m = c^d \mod N$
- $m=m^{ed} \mod N$  because  $ed=1 \mod \lambda(N)$  ("Carmichael's generalization of Euler's theorem")

### Security

- ► (Assumed) hardness of RSA problem (e-th root modulo N)
- ► (Assumed) hardness of factoring large composites (sufficient)

## Algorithms in Cryptography - Key Sizes

#### Symmetric Keys

- Each key in the key space is possible and a priori equally likely
- ▶ Brute-force attack takes up to  $2^k$  steps
- We choose k to be well over what computers can achieve today (but not too much why?); for AES, k = 128

## Algorithms in Cryptography - Key Sizes

### Symmetric Keys

- ► Each key in the key space is possible and a priori equally likely
- ightharpoonup Brute-force attack takes up to  $2^k$  steps
- We choose k to be well over what computers can achieve today (but not too much why?); for AES, k=128

#### Asymmetric Keys

- Not all keys in key space possible
- Some attacks better than brute force, depending on scheme
- For RSA: "general number field sieve" for integer factorization (complexity:  $O(\exp((\sqrt[3]{64/9} + o(1))(\ln N)^{\frac{1}{3}}(\ln \ln N)^{\frac{2}{3}})))$
- ► To remain "equivalent" to 2<sup>128</sup>, *N* is 2048 or 4096 bits

Miscellaneous Topics

Algorithms we discussed are "efficient" (some more than others)

Algorithms we discussed are "efficient" (some more than others) Generally, "efficient" means sub-exponential (depends on context)

Algorithms we discussed are "efficient" (some more than others)
Generally, "efficient" means sub-exponential (depends on context)
Some problems are hard: # efficient algorithm (conjecture)

Algorithms we discussed are "efficient" (some more than others)
Generally, "efficient" means sub-exponential (depends on context)
Some problems are hard: # efficient algorithm (conjecture)

### Example 1: Traveling Salesman Problem (TSP)

- ▶ Given G = (V, E), find  $\pi = (v_1, ..., v_n)$ , a permutation of V, that minimizes  $C = \sum_{i=1}^n w(v_i, v_{i+1}) + w(v_n, v_1)$
- "Shortest path that visits all cities"

Algorithms we discussed are "efficient" (some more than others)
Generally, "efficient" means sub-exponential (depends on context)
Some problems are hard: # efficient algorithm (conjecture)

### Example 1: Traveling Salesman Problem (TSP)

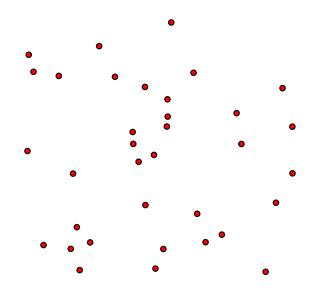
- ▶ Given G = (V, E), find  $\pi = (v_1, ..., v_n)$ , a permutation of V, that minimizes  $C = \sum_{i=1}^n w(v_i, v_{i+1}) + w(v_n, v_1)$
- "Shortest path that visits all cities"
- Naive algorithm: try all  $\pi$ , compute C for each  $\to O(n \cdot n!)$

Algorithms we discussed are "efficient" (some more than others) Generally, "efficient" means sub-exponential (depends on context) Some problems are hard: # efficient algorithm (conjecture)

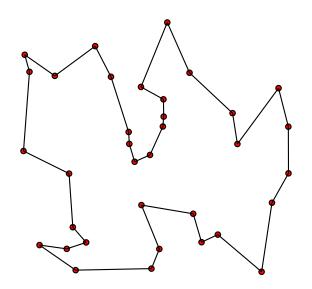
### Example 1: Traveling Salesman Problem (TSP)

- ▶ Given G = (V, E), find  $\pi = (v_1, ..., v_n)$ , a permutation of V, that minimizes  $C = \sum_{i=1}^n w(v_i, v_{i+1}) + w(v_n, v_1)$
- "Shortest path that visits all cities"
- Naive algorithm: try all  $\pi$ , compute C for each  $\to O(n \cdot n!)$
- ► Slightly better exists:  $O(n^2 \cdot 2^n)$
- Also, other approaches (branch-and-bound, linear programming)... but nothing "efficient"

## Miscellaneous Topics - Traveling Salesman Problem



## Miscellaneous Topics - Traveling Salesman Problem



#### Example 2: RSA

Find p given  $c = p^e \mod N$  where N = pq semiprime

#### Example 2: RSA

- Find p given  $c = p^e \mod N$  where N = pq semiprime
- ightharpoonup Typically framed as integer factorization (finding p and q)
- Both are "difficult"

### Example 2: RSA

- Find p given  $c = p^e \mod N$  where N = pq semiprime
- Typically framed as integer factorization (finding p and q)
- ► Both are "difficult"
- ... and it's a good thing!

### Example 2: RSA

- Find p given  $c = p^e \mod N$  where N = pq semiprime
- Typically framed as integer factorization (finding p and q)
- ► Both are "difficult"
- ... and it's a good thing!

#### What to do then?

Small instances

#### Example 2: RSA

- Find p given  $c = p^e \mod N$  where N = pq semiprime
- Typically framed as integer factorization (finding p and q)
- ► Both are "difficult"
- ... and it's a good thing!

#### What to do then?

- Small instances
- Special cases

#### Example 2: RSA

- Find p given  $c = p^e \mod N$  where N = pq semiprime
- Typically framed as integer factorization (finding p and q)
- ► Both are "difficult"
- ... and it's a good thing!

#### What to do then?

- Small instances
- Special cases
- Approximate solutions

## Miscellaneous Topics – Approximate Algorithms

Sometimes, finding an approximate solution is "good enough" Compromise between cost and quality of the approximation

# Miscellaneous Topics – Approximate Algorithms

Sometimes, finding an approximate solution is "good enough" Compromise between cost and quality of the approximation

#### Methods

► **Greedy** algorithm: e.g. in the coin change algorithm

## Miscellaneous Topics - Approximate Algorithms

Sometimes, finding an approximate solution is "good enough" Compromise between cost and quality of the approximation

#### Methods

- Greedy algorithm: e.g. in the coin change algorithm
- **Proof.** Relaxation: e.g. integer minimization  $\rightarrow$  real minimization

## Miscellaneous Topics - Approximate Algorithms

Sometimes, finding an approximate solution is "good enough" Compromise between cost and quality of the approximation

#### Methods

- ► **Greedy** algorithm: e.g. in the coin change algorithm
- ightharpoonup Relaxation: e.g. integer minimization ightarrow real minimization
- Local search and other incremental optimizations: e.g. starting with a random sampling of edges in TSP, and perturbing iteratively

## Miscellaneous Topics - Approximate Algorithms

Sometimes, finding an approximate solution is "good enough" Compromise between cost and quality of the approximation

#### Methods

- ► **Greedy** algorithm: e.g. in the coin change algorithm
- **Relaxation**: e.g. integer minimization  $\rightarrow$  real minimization
- Local search and other incremental optimizations: e.g. starting with a random sampling of edges in TSP, and perturbing iteratively
- ► Randomness, sampling, etc.

# Miscellaneous Topics - Parallel Algorithms

### Parallel Algorithms

- Some are naturally parallelizable, or even distributable
- ► Some are not ("serial"/"sequential")
- May matter in current computational paradigm

# Miscellaneous Topics - Parallel Algorithms

### Parallel Algorithms

- Some are naturally parallelizable, or even distributable
- ► Some are not ("serial"/"sequential")
- May matter in current computational paradigm
- Limitations: intrinsic algorithmic sequencing, communication, balancing, etc.
- "Parallel slowdown"

# Miscellaneous Topics - Parallel Algorithms

#### Parallel Algorithms

- Some are naturally parallelizable, or even distributable
- ► Some are not ("serial"/"sequential")
- ► May matter in current computational paradigm
- Limitations: intrinsic algorithmic sequencing, communication, balancing, etc.
- "Parallel slowdown"

#### Example: Matrix Multiplication

$$\begin{pmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{pmatrix} = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix} \begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix} 
= \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}$$

## Miscellaneous Topics - Space Complexity

### Space Complexity

- Memory required when executing an algorithm
- ► Analogous to time complexity (big *O* notation, etc.)
- Always bounded by time complexity! Exercise: why?

# Miscellaneous Topics - Space Complexity

### Space Complexity

- Memory required when executing an algorithm
- Analogous to time complexity (big O notation, etc.)
- Always bounded by time complexity! Exercise: why?

### When Memory Matters!

- Sometimes memory is precious, or even limiting
- Already touched upon once aspect: implicit data structures
- In-place versus out-of-place (esp. for sorting)
  - e.g. Bubble sort versus Quicksort
- ► Time-space trade-offs: caching, compression, in crypto, etc.

Other related limitations:  $\neq$  kinds of memory, network, etc.

### Average Case Complexity

► Measure of the "average" case

- ► Measure of the "average" case
- ... but what does average mean??

- ► Measure of the "average" case
- ... but what does average mean??
- ► Needs assumption on *input distribution*

- ► Measure of the "average" case
- but what does average mean??
- ► Needs assumption on *input distribution*
- ► You already tackled this in labs when testing
- ightharpoonup Meaningful when average case  $\neq$  worst case (e.g. Quicksort)

- ► Measure of the "average" case
- ... but what does average mean??
- Needs assumption on input distribution
- You already tackled this in labs when testing
- ightharpoonup Meaningful when average case  $\neq$  worst case (e.g. Quicksort)
- Amortized complexity: related but different

#### Average Case Complexity

- ► Measure of the "average" case
- but what does average mean??
- Needs assumption on input distribution
- ▶ You already tackled this in labs when testing
- ightharpoonup Meaningful when average case  $\neq$  worst case (e.g. Quicksort)
- Amortized complexity: related but different

#### Examples

- ► Sorting: all permutations equally likely
- BST Insert: all possible BSTs of a given size n
  - Potentially very hard to consider
  - Often: random uniform sampling (with care...)

# Miscellaneous Topics - Worst Case Complexity Revisited

### Why Worst Case so Prevalent?

- Easier to work with
- In many cases, tight bound
- ► Sometimes it is precisely what we want to capture
- ► Real-time and user-facing applications
  - ► User experience: e.g. web, apps, etc.
  - Safety: e.g. air/train/road traffic signalling
  - Cascading effects: e.g. scheduling